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On the Dynamics of Excitations in 
Disordered Systems 
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A new, time-local (TL) reduced equation of motion for the probability distribu- 
tion of excitations in a disordered system is developed. To O(k  2) the TL 
equation results in a Gaussian spatial probability distribution, i.e, (P( r ,  t))  
= [(2~r01/2]-aexp(-r2/2~2),  where ~ = ~(t) is a correlation length, and r = Ir[. 
The corresponding distribution derived from the Hahn-Zwanzig  (HZ) equation 
is more complicated and assumes the asymptotic (r--->~) form: ( P ( r , s ) )  
~ ( s ~  ' t ) -  l e x p ( -  r/O" (r /O0-a) /2  where ~ = ~(s), d is the space dimensionality, 
and s is the Laplace transform variable conjugate to t. The HZ distribution 
generalizes the scaling form suggested by Alexander et al. for d = 1. In the 

Markov limit ~ ( t ) ~ ,  ~ ( s ) ~ l / ~ ,  and the two distributions are identical 
(ordinary diffusion). 

KEY WORDS: Disordered system; diffusion; master equations; non- 
Markovian dynamics. 

The problem of the dynamics of particles or excitations in systems that 
exhibit various types of randomness but are translationally invariant on the 
mean is currently under active study. O-7) Some examples are energy 
transfer and spectral diffusion among randomly scattered impurities in a 
solid or fluid, electrical conductivity in disordered lattices, the vibrations of 
a disordered chain, etc. A natural starting point for the theoretical treat- 
ment of many of these systems is a master equation for the probability 
distribution P(r, t) of finding the particle (or excitation) at point r at time t, 
i.e., 

de (r, t) 
dt - ~ W ( r , r ' ) e ( r ' , t )  (1) 

r' 
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where conservation of probability requires that ~rW(r,r ' )= 0. (We are 
using here a discrete notation for r and r'; in the continuous, long- 
wavelength limit the summations will be replaced by integrations.) W(r, r') 
are taken to be random variables which have a given probability distribu- 
tion and statistical properties which depend on the problem at hand. We 
denote ensemble averaged quantities by ( . . . ) ,  e.g., (P ) ,  (W), etc. We 
wish to evaluate (P(r, t)), given the statistical properties of W and the 
initial condition: ( P ( r , 0 ) ) =  ~r.0- Since the ensemble-averaged system is 
translationally invariant it is convenient to switch to k space by defining 

(P(k, t)) = ~ (P(r,  t))exp(ik �9 r) (2) 
r 

The equation of motion derived by Hahn and Zwanzig (HZ) (5~ is 

d(P(k, t)) 
_ rjotdr ~-))(P(k,t)) (3) dt 

where 

(R(k, ~')) = - (W(k))6(T) - ~ (0[W exp(QWt) 0Wlr)exp(ik �9 r) (3a) 
F 

and 

(W(k))  = - ~ (W(r))exp(ik �9 r) (3b) 
r 

ff is a projection operator which performs the ensemble averaging /~A 
- - ( A )  and Q is the complementary projection, Q = 1 - P. We wish to 
suggest here an alternative equation. Instead of (3) we write the time local 
(TL) equation: 

d(P(k, t)) _ r |td, r~(k , , r ) .p(k , t  ) (4) 
dt JO 

where 

and where 

( g ( k ,  = - 2 (4a) 

(~(k, t)) = ~ (0[exp(Wt)Ir)exp(ik �9 r) (4b) 
F 

Equations of this type were proven recently very useful for other prob- 
lems (8~ and the proof of Eq. (4) is formally identical with the formalism 
developed elsewhere(8~where the starting equation was the Liouville equa- 
tion [instead of (1)] and the averaging ( �9 �9 �9 ) had a different meaning. 
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The HZ equation is most easily solved in the frequency domain, by 
performing a Laplace transform: 

(P(k ,  s))> --fo ~ (P(k ,  T))exp( -- ST) (5a) 

(R  (k, s))  = fo ~dT (R  (k, T))>exp( - sT) (5b) 

we then have 

where 

and where 

(P(k ,T) )  = ~ J-f' d0~exp(-  i~T)(P(k,s = - i~)) (6a) 

( e ( k , s ) )  - 1 s + R (k, s) (6b) 

(R(k , s ) )  = k2D2(s) + kaD4(s) + . . .  (6c) 

On the other hand the solution of the TL equation is 

( P ( k , t ) ) = e x p [ - f o t d T ( t - T ) ( / ~ ( k ,  T))] (7a) 

where 

/~(k, T) ~ k2/)2(T) + k4/~4(T) "1- " ' "  (7b) 

In Eqs. (6c) and (7b) we have assumed that our system is isotropic so that 
only even powers of k(k  = Ikl) appear. 

Both solutions (6) and (7) are formally exact but as we shall see they 
may yield very different results for (P(k,  t)) once the kernels ( R )  or ( R )  
are evaluated approximately such as when the expansions (6c) or (7b) are 
truncated. 

In order to compare Eqs. (6) and (7) let us define the nth moment  of 
the distribution (P(r ,  t)), i.e., 

M.(t)  : fd r  r"<e(r, t)> (8) 
where by construction M 0 = 1. The various moments  may be obtained 
directly from (P(k ,  t)) using the identity 

M , = - i "  dn -[l-k- a <P(k, t))k= 0 (9) 

where k = Ikl. For one dimension (P(k, t )> = (P(k,t)> but for higher 
dimensionalities one should add an appropriate phase space factor. 
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Using the expansion (6c) and (7b) it is clear that if we truncate them at 
nth order (i.e., retaining terms up to k n) then the first n moments 
M 1 . . .  Mn will be exact for both expansions. However, the two expansions 
will have different predictions regarding the higher moments. The choice of 
the equation [either Eq. (3) or Eq. (4)] is therefore equivalent to an ansatz 
regarding the behavior of the higher moments. We shall now explore this 
hidden ansatz by considering the shape of the distribution (P(r ,  t)) for the 
common case where we truncate the expansions to O(k 2) (i.e., the long- 
wavelength limit). Using Eq. (9) it is clear that all the odd moments M1, 
M3, etc. vanish identically in our case since no odd powers of k appear in 
<,'(k, t)>. 

For the HZ equation (6) we have 

k d- ldk exp( - ik.  r) (10) f (e(,,s)> 
= J  s + k2D2(s) 

which may be represented as 

(P(r,s)) = (s~ d)-'F(r/~) (1 la) 

where 

= - -  ( l l b )  
s 

and 

yd-I JJ~)- 1 ( l l c )  F(x) ecs176176 i+)-2 yU/2-1 

Here Jp(y) is a Bessel function of the first kind. An asymptotic evaluation 
of F(x) for x ~ oo results in (9) 

xxp(- x) 
F(x) > ( l l d )  

x--->oo x (d-  1)/2 

Turning now to the TL equation we have upon truncating (/~(k, t)) to 
O(k 2) 

(P(k ,  t))  = exp( - �89 2) (12) 

which gives 

(P(r ,  t)) = [ (2~r)~/2~]-~exp [ -  r2/2f; 2] (13) 

where 

4 2 = M2(t ) = 2s (t - "r)/)2(r ) (13a) 
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In conclusion we note the following: 
1. When the only available information is M2(t ) [either from experi- 

ment or from a truncated diagramatic expansion of ( R )  or ( /~)  to O(k2)] 
then the TL equation predicts a Gaussian spatial probability distribution 
[Eq. (13)]. This prediction is consistent with the maximum entropy distribu- 
tion (i.e., the least biased probability distribution with the given second 
moment). In contrast the distribution obtained from the HZ equation [Eq. 
(11)] is more complicated, and in general is very different. 

2. The higher moments predicted by the second-order TL equation 
are very simple: 

(2p)! ]~ 
M2(~L)(t) = ~ [M2(t ) (an d) (14a) 

This result holds for all dimensionalities d. On the other hand the predic- 
tions of the HZ equation are more complicated. For one-dimensional 
problems we have 

x s ~2)""" #~(5-~- 5-,)~r~(5 -,) (d = 1) 

(14b) 

where M = dM/dt. In particular, for M 4 we have 

Ma~nZ)(t) = 6fotd,cM2(t - ~-))l)/2('r ) (d = 1) (15a) 

M4~TL)(t) = 3M2(t) (all d )  (15b) 

3. In the Markovian limit we assume 

D2(s) ---- D2 = const 

152(t) = D2a(0 

(16a) 

(168) 

so that ~2(t) = 2Dzt and ~2(s) = Dz/s. In this case both equations reduce 
to the ordinary diffusion equation: 

d(P(k, t)) 
- k2D2(P(k,t)) (17a) dt 

whose solution is 

and 

P(r, t) = (4~rD2t)- a /2exp(-  r2/4D2 t) 

(2p)! (D2t)P ' M2p(t ) = 

(17b) 

p > 1 (18) 
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4. The results (11) and (13) hold when we truncate our expansions 
(6c) or (7b) to O(k2). By going to higher orders (k n) we may guarantee that 
both formulations will agree for the first n moments. At infinite order they 
are both exact. 

5. The form ( l la)  together with ( l ld)  and in particular the relation 
(P(r  = O,s))~(~s) - l  for d =  1 was suggested recently, (4'1~ as an Ansatz 
based on a scaling argument. In the present formulation this is a straight- 
forward result of the second-order HZ equation and Eqs. (11) generalize 
this result to all d. Moreover, Eq. (13) provides an alternative prediction, 
i.e., P ( r = O , t ) =  [(2~r)l/2~(t)] -a. Experiments or numerical simulations 
should be used to decide whether (11) or (13) are to be preferred. 
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